MATHEMATISCHES INSTITUT DER UNIVERSITÄT ZU KÖLN

Dr. Stephanie Friedhoff, Dr. Martin Lanser

Einführung in HPC

Sommersemester 2016

Übung 3

Hinweis: Schreiben Sie bitte jede Aufgabe auf ein neues Blatt und auf jedes Blatt Ihren Namen. Auf die erste Seite Ihrer Übung schreiben Sie bitte zusätzlich zu Ihrem Namen Ihre Matrikelnummer.

Aufgabe 1 (3 + 3 Punkte).

Wir nehmen an, dass das Senden eines Vektors mit n Komponenten von einem Prozessor zu einem anderen Prozessor $t_k(n) = (\alpha + \beta n)t_a$ Zeit benötigt. Hierbei beschreibt αt_a die Latenzzeit, die unabhängig von der Nachrichtengröße ist, und t_a die Zeit, die für eine Addition zweier Zahlen benötigt wird.

a) Bestimmen Sie die Laufzeit t(n, N, q) des Fan-in zur Berechnung von

$$s = \sum_{j=1}^{q \cdot 2^N} y_j, \ y_j \in \mathbb{R}^n, \ j = 1, ..., q \cdot 2^N$$

mit $p=2^N$ Prozessoren. Beschreiben Sie die Effizienz E als Funktion von $\frac{N}{q}$ und n. Was fällt Ihnen auf?

b) Für welche $\frac{N}{q}$ ergibt sich eine akzeptable Effizienz $E \geq 0.5$? Berechnen Sie $E(\frac{N}{q},n)$ für die Werte $\alpha=1000,\ \beta=10,\ N=6,\ q=18$ und n=10,100,1000.

Hinweis: Zur Vereinfachung können Sie annehmen, dass eine serielle Addition von m Zahlen eine Laufzeit von $m \cdot t_a$ hat (an Stelle des genaueren Wertes $(m-1) \cdot t_a$).

Aufgabe 2 (3 + 3 Punkte).

Gegeben seien eine Matrix $A \in \mathbb{R}^{n \times m}$ und ein Vektor $x \in \mathbb{R}^m$. Es sei $m = q \cdot 2^N$ und die Matrix A sei spaltenweise in 2^N Blöcke der Dimension $n \times q$ zerlegt. Der Vektor x sei analog in 2^N Blöcke der Länge q zerlegt.

- a) Bestimmen Sie die Laufzeit t(n, N, q) der Matrix-Vektor-Multiplikation $A \cdot x = b$ mit $p = 2^N$ Prozessoren, wobei der Vektor $b \in \mathbb{R}^n$ sequentiell (nicht zerteilt) gespeichert werden soll. Berechnen Sie auch die Effizienz in Abhängigkeit von q, n und N. Nutzen Sie t_k aus Aufgabe 1 zur Modellierung der Kommunikationszeit. Sie können davon ausgehen, dass die Zeit t_{a+m} einer seriellen Addition plus einer Multiplikation genau so lange dauert wie die Zeit für eine Addition t_a .
- b) Stellen Sie die Effizienz E für fixierte Werte $\alpha=1000,\ \beta=10,\ m=32768$ und n=1000 in Abhängigkeit von N=0,1,2,... dar, also in Abhängigkeit von einer steigenden Anzahl an Prozessoren. Nutzen Sie dazu ein einfaches x-y-Diagramm. Beachten Sie, dass $q=\frac{m}{2N}$ gilt!

Programmieraufgabe 2 (6 Punkte).

Gegeben seien eine Matrix $A \in \mathbb{R}^{n \times m}$ und ein Vektor $x \in \mathbb{R}^m$. Es seien $n = r \cdot p$ und $m = q \cdot p$, wobei $p, q, r \in \mathbb{N}$. Die Matrix A sei zeilenweise in p Blöcke der Dimension $r \times m$ zerlegt und der Vektor x sei in p Blöcke der Länge q zerlegt. Implementieren Sie ein paralleles Programm mit p MPI Prozessen (Ränge 0 bis p-1), das die parallele Matrix-Vektor-Multiplikation $b = A \cdot x$ durchführt. Jeder MPI-Prozess soll dabei nur jeweils **einen** Block der Matrix A und **einen** Block des Vektors x speichern. Während der Berechnung darf jeder Prozess zusätzlich temporär maximal **einen** weiteren Block des Vektors x speichern. Der Ergebnisvektor $b \in \mathbb{R}^n$ soll ebenfalls auf die p Prozesse verteilt werden, d. h. p soll in p Blöcke der Länge p zerlegt sein, wobei jeder MPI-Prozess nur **einen** Block von p speichern soll.

Hinweise:

- Verwenden Sie die Anzahl Blöcke r und q als Eingabeparameter für Ihr Programm, um sicherzustellen, dass die Blockgrößen für alle Prozesse gleich sind.
- Als einfachen Testfall für die korrekte Funktionsweise Ihres Programms können Sie auf Prozess P_i , $i=0,\ldots,p$ für alle Einträge der lokalen k-ten Zeile $(k=1,\ldots,r)$ den Wert $(i+1)\cdot(k/p)$ wählen und 1 für alle Einträge des Vektors x.
- Nutzen Sie für Ihre Implementierung die Funktion MPI_Bcast, die eine (blockierende) Broadcast-Operation durchführt, d. h. ein Prozess sendet eine Nachricht an alle Prozesse in einem Kommunikator.

Abgabedatum: 23. Mai 2016 bis 12:00 Uhr im entsprechenden Kasten in Raum 3.01 des Mathematischen Instituts oder am Ende der Vorlesung.